8,609 research outputs found

    Impact on the Higgs Production Cross Section and Decay Branching Fractions of Heavy Quarks and Leptons in a Fourth Generation Model

    Full text link
    In a fourth generation model with heavy quarks, the production cross section of the Higgs boson in the gluon-gluon fusion process is significantly increased due to additional quark loops. In a similar way, the partial decay width of the decay channels H→gg,γγH\rightarrow gg, \gamma \gamma and γZ\gamma Z is modified. These changes and their impact on the Higgs search are discussed.Comment: 9 pages, 6 figures, minor changes with a few more references adde

    Adaptive recurrence quantum entanglement distillation for two-Kraus-operator channels

    Get PDF
    Quantum entanglement serves as a valuable resource for many important quantum operations. A pair of entangled qubits can be shared between two agents by first preparing a maximally entangled qubit pair at one agent, and then sending one of the qubits to the other agent through a quantum channel. In this process, the deterioration of entanglement is inevitable since the noise inherent in the channel contaminates the qubit. To address this challenge, various quantum entanglement distillation (QED) algorithms have been developed. Among them, recurrence algorithms have advantages in terms of implementability and robustness. However, the efficiency of recurrence QED algorithms has not been investigated thoroughly in the literature. This paper put forth two recurrence QED algorithms that adapt to the quantum channel to tackle the efficiency issue. The proposed algorithms have guaranteed convergence for quantum channels with two Kraus operators, which include phase-damping and amplitude-damping channels. Analytical results show that the convergence speed of these algorithms is improved from linear to quadratic and one of the algorithms achieves the optimal speed. Numerical results confirm that the proposed algorithms significantly improve the efficiency of QED

    Generalized Interference Alignment --- Part I: Theoretical Framework

    Get PDF
    Interference alignment (IA) has attracted enormous research interest as it achieves optimal capacity scaling with respect to signal to noise ratio on interference networks. IA has also recently emerged as an effective tool in engineering interference for secrecy protection on wireless wiretap networks. However, despite the numerous works dedicated to IA, two of its fundamental issues, i.e., feasibility conditions and transceiver design, are not completely addressed in the literature. In this two part paper, a generalised interference alignment (GIA) technique is proposed to enhance the IA's capability in secrecy protection. A theoretical framework is established to analyze the two fundamental issues of GIA in Part I and then the performance of GIA in large-scale stochastic networks is characterized to illustrate how GIA benefits secrecy protection in Part II. The theoretical framework for GIA adopts methodologies from algebraic geometry, determines the necessary and sufficient feasibility conditions of GIA, and generates a set of algorithms that can solve the GIA problem. This framework sets up a foundation for the development and implementation of GIA.Comment: Minor Revision at IEEE Transactions on Signal Processin

    Mechanisms of dysregulation of low-density lipoprotein receptor expression in vascular smooth muscle cells by inflammatory cytokines

    Get PDF
    Objective - Although inflammation is a recognized feature of atherosclerosis, the impact of inflammation on cellular cholesterol homeostasis is unclear. This study focuses on the molecular mechanisms by which inflammatory cytokines disrupt low-density lipoprotein (LDL) receptor regulation.Methods and Results - IL-1 beta enhanced transformation of vascular smooth muscle cells into foam cells by increasing uptake of unmodified LDL via LDL receptors and by enhancing cholesterol esterification as demonstrated by Oil Red O staining and direct assay of intracellular cholesterol concentrations. In the absence of IL-1 beta, a high concentration of LDL decreased LDL receptor promoter activity, mRNA synthesis and protein expression. However, IL-1 beta enhanced LDL receptor expression, overriding the suppression usually induced by a high concentration of LDL and inappropriately increasing LDL uptake. Exposure to IL-1 beta also caused overexpression of the sterol regulatory element binding protein ( SREBP) cleavage-activating protein ( SCAP), and enhanced its translocation from the endoplasmic reticulum to the Golgi, where it is known to cleave SREBP, thereby enhancing LDL receptor gene expression.Conclusions - These observations demonstrate that IL-1 beta disrupts cholesterol-mediated LDL receptor feedback regulation, permitting intracellular accumulation of unmodified LDL and causing foam cell formation. The implication of these findings is that inflammatory cytokines may contribute to intracellular LDL accumulation without previous modification of the lipoprotein

    Measurement of the c-axis optical reflectance of AFe2_2As2_2 (A=Ba, Sr) single crystals: Evidence of different mechanisms for the formation of two energy gaps

    Full text link
    We present the c-axis optical reflectance measurement on single crystals of BaFe2_2As2_2 and SrFe2_2As2_2, the parent compounds of FeAs based superconductors. Different from the ab-plane optical response where two distinct energy gaps were observed in the SDW state, only the smaller energy gap could be seen clearly for \textbf{E}∥\parallelc-axis. The very pronounced energy gap structure seen at a higher energy scale for \textbf{E}∥\parallelab-plane is almost invisible. We propose a novel picture for the band structure evolution across the SDW transition and suggest different driving mechanisms for the formation of the two energy gaps.Comment: 4 page
    • …
    corecore